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Abstract-The discovery of planets apart from Earth that can 

sustain lives has always been fascinating as well as challenging. 

Discussion around such planets, popularly termed as 

“Exoplanets” have been doing the rounds for quite some time now. 

These exoplanets are often considered to be "Earth-like" or 

"habitable" because they may have conditions that could 

potentially support life. This work focuses on how Deep Learning 

techniques can be useful in identifying potential exoplanets. To do 

so, astronomical data gathered by space telescopes such as Kepler 

and BRITE have been utilized. The method employed to detect 

exoplanets is Transit Photometry along with Convolutional Neural 

Network. The study highlights the limitations of small training 

datasets and suggests the use of data augmentation techniques to 

increase the size of the training dataset, and the transfer learning 

approach to improve the performance of the classification models. 

The research offers valuable insights into the nature and diversity 

of exoplanets and may open avenues for future discoveries. With a 

performance accuracy of 96.67%, the proposed approach 

showcases merit and hence can prove to be a harbinger in 

exploring planetary habitability in the colossal space. 

 
Index Terms- Earth, Exoplanet, Convolutional Neural 

Network, Light Curve, SMOTE, Transit Photometry. 

 

I. INTRODUCTION 

hunt for an alternative to Earth has already started. The 

origin of this discussion is the challenges our planet may 

face in the coming decades. Environmental dangers of the 

twenty-first century, such as invading species, diseases, 

pollution, and changing climate have put human populations in 

danger. To address these environmental issues and protect our 

species and its habitats, the need of the hour is to look for other 

planets in our solar system that are habitable and can sustain 

life. Such habitable planets are quite commonly referred to as 

„exoplanets‟. An exoplanet is any planet in or around the solar 

system. Most of such planets orbit other stars, but free-floating 

exoplanets, called rogue planets, orbit the galactic center and 

are not gravitationally bound to any star. 
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The objective of the current work is to develop and test Deep 

Learning models that can identify patterns in the light curves of 

stars which may indicate the presence of exoplanets, especially 

those planets that are habitable in nature. The proposed 

methodology involves several crucial steps, including 

preprocessing of data to extract useful features, training of the 

Convolutional Neural Network, a well-known Deep Learning 

model, and evaluating model‟s performance using benchmark 

performance metrics. 
 

. II. LITERATURE SURVEY 

In the field of exoplanet detection, identifying planetary 

transit candidates in TESS full-frame image light curves is an 

important problem. One approach to solving this problem is to 

use Convolutional Neural Networks (CNNs), which have been 

shown to be effective at analyzing spatial patterns in image 

data. 

Numerous studies [1] have investigated the utilization of 

convolutional neural networks (CNNs) in the identification of 

exoplanets, with a specific mention of the research conducted 

in [2]. However, a common challenge encountered when 

employing CNNs for exoplanet detection is the scarcity of 

available training data. The research paper acknowledges that 

the number of instances is typically insufficient to effectively 

train a Neural Network on the scale employed in their study 

without succumbing to overfitting. This issue underscores the 

importance of having larger and more diverse training datasets 

for successful exoplanet detection. Various approaches have 

been suggested to tackle this problem, such as employing data 

augmentation techniques to artificially expand the size of the 

training dataset, as well as adopting transfer learning, which 

involves pre-training a network on a substantial dataset and 

subsequently fine-tuning it on a smaller dataset. 

Despite the constraints posed by limited training datasets, 

CNNs have demonstrated encouraging outcomes in the field of 

exoplanet detection and remain a prominent tool in ongoing 

research. Nevertheless, future investigations could venture into 

exploring alternative approaches to CNNs, such as recurrent 

neural networks or hybrid models that amalgamate multiple 

types of neural networks. These alternative approaches aim to 
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enhance the performance of exoplanet detection systems 

and expand the scope of research in this domain. 

Another similar study [3] investigates the use of CNNs 

to identify exoplanet transits in BRITE data. Despite the 

success of this work, the authors have highlighted the 

pressing limitations of their approach. As stated in this 

work, the use of Machine Learning techniques in 

exoplanet detection requires careful interpretation of the 

results and the need for follow-up observations to confirm 

potential exoplanet candidates. The CNN model used in 

the study was successful in identifying plausible transit 

candidates, but the authors stress the need for more 

observational data in future studies to provide firm 

confirmations of these candidates. The use of a small 

training dataset may limit the generalizability of the CNN 

model to other datasets, which is a potential constraint to 

the work. The performance of the CNN models may be 

enhanced in future experiments, according to the authors, 

by using transfer learning methods and larger, more varied 

training datasets. 

When compared to other experimentation outputs, 

research studies [4] and [5] that proposed a CNN-based 

ensemble model for exoplanet detection and a machine 

learning data rejection algorithm for transiting exoplanet 

light curves both produced subpar results. 
 

III. PROPOSED METHODOLOGY 

The method employed in this proposed work is based 

on Transit Photometry [6]. Essentially, this method 

involves observing a star and its surrounding planetary 

system. In this approach, an exoplanet planet revolves 

around its star and captures the star's light intensity. When 

a planet passes in front of a star, a segment of the star is 

obscured and the intensity of the light temporarily 

decreases. The amount of the light intensity dip and the 

duration of the event allow us to assess whether or not the 

rotating body is an exoplanet. 

As seen from the figure (Fig. 1), imagine a planet 

revolving around a star like our own sun. As it moves in its 

orbit, it occasionally passes between us and the star. This 

causes a small portion of the star's light to be blocked, 

resulting in a decrease in brightness that we can observe 

from Earth. By studying these dips in brightness, we can 

determine whether or not the object that is causing them is 

an exoplanet. 

Transit Photometry is just one of the methods used by 

astronomers to detect exoplanets, but it has proven to be 

highly effective [7]. By studying these exoplanets, we can 

learn more about the universe and explore many 

planetary systems that exist beyond our own. 

Convolutional Neural Networks are widely used in various 

fields such as Medical Imaging, Autonomous Driving, and 

Natural Language Processing. They are a powerful tool for 

Image Processing and Analysis due to their high accuracy and 

ability to work with large datasets. In this proposed work, light 

intensities are considered as pixels and spatial patterns are 

identified amongst them by examining the relationships 

between different intensities. To detect exoplanets a special 

type of neural network known as Convolutional Neural 

Network (CNN) architecture is employed so as to learn and 

extract the relevant features from the data.  

 

 
 

 

 

 

 

 

 

 

 

 

                           Fig. 1. Light curve of transiting exoplanet. 

 

 

The CNN architecture is particularly well-suited for analyzing 

image data because it uses filters to identify and extract 

patterns in the data. These filters are applied to small, 

overlapping regions of the image (or in this case, the set of light 

intensities), allowing the network to identify patterns and 

features at multiple scales. The CNN architecture can then use 

this information to make accurate predictions about the 

presence of exoplanets based on the spatial patterns identified 

in the light intensity data. 

The proposed model implements a CNN model using the 

Keras API with TensorFlow as the backend. The model 

architecture is based on the AlexNet CNN [8] that has been used 

for ImageNet Classification. It comprises several layers, 

including convolutional layers, pooling layers, and dense 

layers. The convolutional layers apply filters to the input signal 

to extract features. The pooling layers downsize the feature 

maps to reduce their size and increase their robustness to 

variations in the input. The dense layers perform classification 

based on the extracted features. 

The next challenge comes is to segregate exoplanets on the 

basis of whether there is presence of oxygen or not. Oxygen is 

a biomarker for „Habitable‟ exoplanet. In only one of the many 

ionospheres in our Solar System, i.e., the Earth's, the ionised 

form of atomic oxygen (O+) is the dominant ion species at the 
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altitude of maximum electron density. If oxygenic 

photosynthesis were not an ongoing process that 

continuously influences the terrestrial atmosphere, this 

ionospheric composition would not exist [9]. This implies 

that presence of O+ in the ionosphere is acting as a 

biomarker. Detection of O+ ions in the ionosphere can be 

done using extreme ultraviolet lithography. 

 

IV. IMPLEMENTATION & RESULTS 

A. Dataset Description 

The Exoplanet Hunting in Deep Space dataset used in 

this work has been downloaded from Kaggle [13]. The 

sample plot as seen from Fig. 2 describes how the flux (or 

light intensity) of thousands of stars has changed through 

time. There is a binary label of 2 or 1 for each star. Label 2 

shows that there is evidence of at least one exoplanet 

orbiting the star; other observations indicate multi-planet 

systems. 

The dataset is found to be extremely unbalanced. Only 

1% of the data points are for exoplanets, while 99% are 

for non- exoplanets. Thus, the observations in the dataset 

with 3198 features each have been divided into training 

and validation (or test) sets. There are 5087 observations 

(rows) in the training set with 5050 non-exoplanets and 37 

exoplanets. The test set comprises 570 observations (rows) 

with 5 exoplanets and 565 non-exoplanets. The training 

set is then over sampled using SMOTE (Synthetic 

Minority Over-sampling Technique), which generates 

Synthetic Examples that are similar to those seen in the 

dataset rather than duplicating Minority Class data points. 

There is no possibility that data would leak into the 

validation set because only the training set is over 

sampled. Oversampling balances the unbalanced dataset. 

 

 

B. Reported Results 

Based on the adopted architecture which is a 

customised Alex Net with Dense Layers, the results 

obtained have been reported in a tabular fashion. 

Fig. 2 shows the light curve of an exoplanet whose ID is 

KIC 6922244. 

Table I depicts the performance metrics in the form of 

Precision, Recall and F1-score that have been calculated 

during expolanet detection whereas Table II showcases the 

confusion matrix that summarizes the performance of the 

proposed classification model where instances in terms of 

true positive (TP), false positive (FP), false negative (FN) 

and true negative (TN) are represented for the actual and 

predicted values of a planet being an exoplanet or a non-

exoplanet. 

Fig. 3 depicts the training and validation accuracy (Y-

axis) obtained with the increasing number of epochs (X-axis) 

while Fig. 4 shows the training and validation loss (Y-axis) 

against the increasing number of epochs (X-axis). 

 

Fig. 2 Light curve of an exoplanet having ID– KIC 6922244 

 

 
TABLE I 

Performance Metrics 

 

TABLE II 

Confusion Metrics 

 

 

Fig. 3 Training and Validation Accuracy 

 

 

 

 

 

 

 

 

 

Label Precision Recall F1-Score 

0 (Non-Exoplanet) 1.00 0.97 0.98 

1 (Exoplanet) 0.21 1.00 0.34 

Label 
0 

(Non-Exoplanet) 

1 

(Exoplanet) 

0 (Non-Exoplanet) 546 (TN) 19 (FP) 

1 (Exoplanet) 0 (FN) 5 (TP) 
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             Fig. 4 Training and Validation Loss 

 

 

C. Discussion & Analysis 

      It can be easily concluded that the proposed approach 

manages to correctly detect all the exoplanets without 

misclassification and 546 out of 565 non-exoplanets are 

also correctly recognized. In light of this, we can infer that 

while the proposed model does a good job of recognizing 

exoplanets, it makes trivial mistakes when categorizing 

non-exoplanets. The performance of the proposed 

exoplanet detection classifier can be evaluated from the 

confusion matrix parameters in terms of the accuracy 

score using (1): 

 

       Accuracy = (TP+TN) / (TP+TN+FP+FN)               (1) 

 
where TP stands for True Positives; which is the number 

of samples correctly identified as positive by the model, TN 

stands for True Negatives; which is the number of samples 

correctly identified as negative by the model, FP stands 

for False Positives; which is the number of samples 

incorrectly identified as positive by the model and FN 

stands for False Negatives; which is the number of 

samples incorrectly identified as negative by the model. 

Thus, the model is performing quite well with an 

accuracy score of 96.67%. 

 

V. CONCLUSION 

The proposed work aims to identify, detect and classify 

exoplanets and non-exoplanets in the solar system using the 

Transit Photometry method by building a Convolutional Neural 

Network (CNN) model. The classification accuracy is found out 

to be 96.67%, which is a good indicator of the research 

endeavor being in the right direction. Thus, with the confluence 

of technology and Machine Learning tools, we can surely look 

forward to myriad explorations, thereby unveiling what lies 

beyond in the metagalactic space. 

 

 

 

 

 

 

VI. FUTURE WORK 

The technology of exoplanet transit detection is crucial for 

detecting new planets in the field of applied astrophysics [10]. 

In the search for exoplanets using Machine Learning 

techniques, one of the key factors that can significantly affect 

the performance and accuracy of the models is the availability 

of clean and high-quality datasets. Testing our proposed 

model on fresh, larger datasets would be worthwhile. 

Remember that the light curves of thousands of additional 

stars that the Kepler‟s telescope has gathered can be found in 

the MAST database (Mikulski Archive for Space Telescopes). 

But this data must be downloaded and processed in order to 

extract the light curves because they are not currently in a 

format that a Machine Learning model can use directly. Due 

of time constraints, it was not possible to test the proposed 

models using fresh datasets. Radio backscatter techniques 

have clearly shown signatures of O+. However, radio study 

still requires a lot of development. In addition to the 

availability of clean data, the use of more efficient algorithms is 

also critical in improving the performance of machine learning 

models for exoplanet detection. The XGBoost algorithm, for 

instance, is a popular and powerful technique that can be used 

to boost the performance of a classification model by 

combining the predictions of multiple weak classifiers. By 

using XGBoost techniques, the probability of achieving better 

outcomes is high, even when a relatively small set of classifiers 

is used. 
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