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Abstract—Data fusion is an important area in different fields

of applications as it provides a detailed analysis of the data store 

which helps in analytics and decision support system. Among the 

numerous Data Fusion models available in literature, the six 

pioneer pieces of work in terms of Data Fusion Models are –

Waterfall Model, Multisensor Integration Fusion Model, 

Behavioral Knowledge-based Data Fusion Model, Omnibus 

Model, Dasarathy Model and JDL Model. In this paper, we have 

given a comparative study of the above models based on basic 

features like signalling overhead, power consumption, fault 

tolerance, survivability and robustness facilities subsequently. 

Here, a new improved model, named Community Model has been 

proposed for better throughput in terms of Data Transmission 

Time (DTT). This model can be applied to any number of filter 

levels irrespective of application areas. 
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I. INTRODUCTION 

With more and more information sources available via 
inexpensive network connections, either over the Internet or in 
company intranets, the desire to access all these sources 
through a consistent interface has been the driving force 
behind much research in the field of data fusion. The 
advantages of information integration systems is that the user 
of such a system obtains a complete yet concise overview of 
all existing data without needing to access all data sources 
separately. The applications of data fusion are used in 
different areas namely maintenance engineering [1], robotics 

[2], pattern recognition and radar tracking [3], mine detection 
[4] and other military applications [5], remote sensing [6], 
traffic control [7],[8], aerospace systems [9], law enforcement 
[10], medicine, finance, meteorology [11], and geo-science. 
There are different structural models available in the 
literature[11]. Naturally the models are of prime importance as 
the structure defines the working principle in terms of the 
practical implication. It was found that all the proposed 
models try to incorporate a particular practical scenario and 
based on that decides the working principle. Here, a new 
functional model namely Community Model, has been 
proposed to extend the concept of fusion in different 
environments and it has been found that it yields better result 
in terms of transmission time with respect to the other models. 
This paper is organized as follows - Section 2 deals with the 
classical data fusion models and their comparison. Section 3 
deals with the Community model and deduces a formula to 
calculate the DTT and introduces an algorithm for community 
model. Section 4 deals with the comparative analysis based on 
the DTT. 

II. CLASSICAL DATA FUSION PARADIGMS

The literature provides many models to compose data 

fusion. It was found that the Waterfall Model, Multisensor 

Integration Fusion Model, Behavioral Knowledge-based Data 

Fusion Model, Omnibus Model, Dasarathy Model and JDL 

Model gives better result in different application specific 

areas. 



A. Waterfall Model [11][14] 

In waterfall model, it is observed that data flow operates 
from the data level to the decision making level. The 
continuous updation of sensor system is carried out on a 
steady basis with feedback information that arrives from the 
decision-making module. The feedback element provides 
advice to the multi-sensor system on re-configuration and data 
gathering aspects. 

The three levels of representation in the waterfall model are: 

1) Level 1

Transformation of raw data is carried out to provide the 

requisite information about the environment. For this to be 
achieved, the models of sensors are required. The models 
could be based on either physical laws or experimental 
analysis. 

2) Level 2

This level comprises of feature extraction and thereafter 
the fusion of those features. This is done to obtain a symbolic 
level of inference about the data. The main objective here is to 
minimize the data content and maximize the amount of 
information delivered thereby. The output of this particular 
level is a list of estimates with the corresponding probabilities. 

3) Level 3

This level maps objects to the corresponding events. On 

the basis of information that has been gathered, the available 

databases and libraries, and the human interaction, the 

possible routes of action are assembled. 

B. Multi-Sensor Integration Fusion Model [11][15] 

In Multi-Sensor Integration Fusion Model, data from the 
different sources was collected and combined in a hierarchical 
manner within the embedded fusion centres. Using this model, 
a clear distinction was made between multi-sensor integration 
and multi -sensor fusion. Multi-sensor integration is all about 
the usage of multiple sensor information in order to assist in a 
particular task, whereas multi-sensor fusion refers to any 
arbitrary stage of the integration process where the actual 
combination of data takes place. 

Firstly data is collected at the sensor level which is then 
transferred to the fusion centres. The fusion process is 
thereafter carried out in the fusion centres which in turn could 
be done in a hierarchical and sequential manner. An 
information system is incorporated in the fusion process and is 
highly useful in the sense that it contains the relevant 
databases and libraries. 

C. Behavioral Knowledge-based Data Fusion Model [11] 

This framework comprises of a few basic stages which 
necessarily needs to be computed before the output is 
established. According to this framework, firstly a feature 
vector is extracted from the raw data. The feature vector is 
associated to the defined features, thereafter fusion is carried 
out at the data analysis levels and at the sensor attribute. 
Finally, a set of behavioral rules are extracted as a final 
representation of the fused output. This model describes the 
three levels of representation. 

In the lowest level, corresponding to each sensor, there 
exists a vector space with measured parameters and coordinate 
dimensions. The second level attaches labels to the appropriate 
or relevant features that are in turn extracted from these 
vectors. Lastly, the third level comprises of a set of 
formalisms which relates or maps the feature vectors to the 
events. 

This model is employed in the fields like human detection 

and identification like security control, monitoring, etc. 

D. Omnibus Data Fusion Model [11][14] 

Omnibus data Model, is a hybrid of the three models 
namely Boyd loop, Dasarathy, and Waterfall models. These 
modules address the variety of tasks in data fusion and it’s 
functional objectives. The Boyd loop is an iterative process 
with four elements (namely observe, orient, decide and act) 
which operates in a closed loop. 

E. Dasarathy Model [11][16] 

In Dasarathy model, the three main levels of abstraction 

during the data fusion process are – Decisions, Features and 

Data. The Fusion might occur both within these levels and as a 

means of transformations between them. 

F. JDL Model [11][14] 

In this model, the information sources which are used for 
data fusion can very well include both local and distributed 
sensors(ones that are physically linked to the other platforms), 
or environmental data, a priori data, and human guidance or 
inferences. The JDL data fusion process contains the six 
different levels of processing. 

G. Comparison of Data Fusion Models 

This section deals with the comparison of various existing 

data fusion models based on different parameters like power 

consumption, fault tolerance etc. 



TABLE I. COMPARISON OF SIX SIGNIFICANT DATA FUSION MODELS 

Model/ Paradigm Advantage /Contribution Drawback/ Level Traversability Fusion Overhead 
Shortcomings 

Level 1 Level 2 Level N 
Waterfall Reduce signaling overhead and Frequent inter domain movement 

√ √ √ Low under restricted levels. Model power consumption increase latency. 

Multisensor Provides fault tolerance, Multiple registrations increase 
√ √ √ High Integration Fusion survivability and robustness. signaling overhead. 

Model 
Behavioural Provides survivability based on Multiple registrations increase 

√ √ √ High Knowledge-based knowledge-based wisdom. signaling overhead. 
Data Fusion Model 
Omnibus Model Signals lifetime can be adjusted Frequent inter domain movement 

√ √ √ Low under restricted levels. according to mobility pattern to leads to the normal binding

reduce signaling overhead. update and same signaling cost. 

Dasarathy Model Controlled monitoring can be Incurs extra cost for control 
√ √ √ Low done based on information monitoring 

integration. 

JDL Model Buffering of packets in each Extra registration requires for 
√ √ √ High stage during data transmission. prefix notification. 

III. THE PROPOSED PARADIGM: COMMUNITY MODEL

The data fusion models discussed in the previous section 
are application specific and minimize the data transmission 
time in signaling overhead, power consumption, fault 
tolerance, survivability and robustness facilities. Our intention 
is to develop a new model which will be applicable in 
different application areas like radar signal processing, image 
processing, data mining, decision support system etc. The 
proposed Paradigm, Community Model (Fig 1) is aimed at 
developing a model which can be used irrespective of 
environments. Its different levels can ease out the burden from 
Master Fusion Filter by comparing the fused information 
using the reference sensor at each level. Here each sensor has 
multiple levels. These multiple levels were used for further 
refinement of the collected data from the sensors. As different 
filtering algorithms are used and executed at different filter 
levels, the fine-tuning of the data increases in manifold. As the 
reference sensor is feeding the data directly at each level, it is 
easier to compare the fused data with its actual value. At each 
level, all parallel filters compare their individual sensor data 
with a common reference data and calculates local system 
states. Then these local estimates are sent to the parallel filters 
of the next level which repeats the same process as the parallel 
filters in the previous level and it continues up to the Nth level 
of filter. After crossing all the levels, the local estimates from 
the last level are finally fused in master filter to get global 
estimates. Parallel filters have a common state vector as they 
all share common reference system. When the signals arrive to 
the filters at various levels, they are processed and transmitted. 



Figure 1 Community Model 

A filter can process only one signal at a time. If signals 
arrive at a rate faster than the filter can process them (such as 
in a burst transmission) the filter puts them into the queue 
(also called the buffer) until it is transmitted. Here the 
transmission time is the composition of the time difference 
between each filter levels up to the maximum level as well as 
the final transmission to the Master Fusion Filter. During 
network congestion, transmission time can be considered 
infinite when the signal is dropped. The retransmission of such 
signals causes significant overall delay because all forms of 
delay will be incurred more than once. The proposed model 
and its detailed process flow are shown in fig 1 and 2 
respectively. 

(iv) Scale factor stability is a measure of how good the 

gyro output is with respect to rotation input. It actually deals 

with the difference between the different angular inputs for a 

specific data set. 

(v) Alignment represents data points that lie on a relatively 

straight path. 

(vi) Random noise is a noise characterized by a large 

number of overlapping transient disturbances occurring at 

random. 

The uncertainty in the bias of a parameter consists of the 

uncertainty due to drift, the uncertainty due to random 

variations and due to uncertainty in testing. 

Mathematical Formulation 

This section deals with the formulation of DTT in terms of 
different parameters such as perimeter of a data fusion filter, 
data fusion density, flattening, scale factor stability, 
Alignment, random noise, bias uncertainty etc. which have 

been discussed in the previous section. 

Let N = Total number of local filters, Pm = Perimeter of 

master fusion filter, 

Hence, Perimeter of each local filter(Pn) will be - 

Pn  = N√(Pm/N)
2

(1) 

If  we  consider,  ρ=  Data  fusion  density  per  LF, 

v=Average velocity of the light then the Crossing rate of 

different LF levels (Rn) is, 

Rn = (ρvPn/π) (2) 

Considering, Flattening of the LF surface(F), the 

modified crossing rate is - 

RnF = (ρvPn/π)/F (3) 

Incorporating scale factor stability(S), equation (3) 

becomes, RnFS = S(ρvPn/π)/F (4) 

Introducing random noise(NR), the formulation of 

crossing rate will be - 

Figure 2 Community Model Flow-Graph 

Related Terms 

To compare different models, we require to find the DTT. 

This section discusses about the terms related to the 

formulation of DTT: 

(i) Perimeter of a data fusion filter means the area through 

which the data is passed. 

(ii) Data fusion density is a data fusion operator based on 

averaging that is weighted by the density of each particular 

data sample. 

(iii) Flattening is a measure of the compression of an 

object where the individual entries are collated to form the 

actual object. 

RnFSR = S(ρvPn/π)/F + N*NR (5) 

Considering the alignment consideration as A, we 

get 

RnFSRA = 1/A[S(ρvPn/π)/F + N*NR] (6) 

Taking the bias uncertainty(H) into account, we have 

RnFSRAH = 1/A[S(H*ρvPn/π)/F + N*NR] (7) 

Considering the latency time as LT  we get, 

RnFSRHL = LT*1/A[S(H*ρvPn/π)/F + N*NR] (8) 

So the transmission time upto Nth level will be the 
summation of the crossing rate of all the individual levels. 

And hence the DTT (TR) is - 



N

TR = ∑ LT*1/A[S(H*ρvPn/π)/F + N*NR] (9) 
1

Component Modules used in Community Model 

The community model structure can be represented as a 

collection of different procedures following the model shown 

in figure 1 viz. Provider Preprocessing (PP), Goal 

Identification (GI), Situation Filtration (SF) and Impairment 

Minimization (IM). Here we are illustrating the different 

components of the fusion domain of figure 1 as the functions 

in pseudocode assuming that the database fusion domain 

information is available. Initially we call the procedures GI 

and SF and then we are initializing the data transmission time 

(TR) as zero. In the next step we are taking the input values. 

Here we have three basic filtering criteria - local, distributed 

and global. If we choose the local level then the transmission 

of data is no longer required. But if we choose global or 

distributed state then we have to verify whether the filtered 

data matches with that of the reference sensor or not. If the 

data does not match, the values are updated using the 

reference sensor otherwise the values are taken as it is. After 

that the data transmission is calculated as in (9). 

For the sake of simplicity we have modularized the 

community model procedure with the following components – 

1) Provider Preprocessing (PP)

The procedure PP actually deals with the initialization
of different parameters with specified values available in the 

literature [17], so that after each stage of filtering, they can be 
verified and if the value does not match with the required 

value then it is replaced. Here the data are inputted to the 

Reference Sensor (RS) so that they can be used to verify the 
data with the data that are available after each stage of 

filtration. It actually consists of a single stage which only takes 

the inputs against the standard parameters. Genericly, the 

input parameters are defined throgh the RS(i). This (i) signifies 

the following – 

A = Alignment consideration 

S = Scale factor stability 
H = Bias uncertainty 
ρ = Data fusion density per local filter 
V = Average velocity of the light 
P = Perimeter of local filter 
N = Number of filter level 

Thus the explicit input parameters are RSA, RSS, RSH, RSρ , 

RSV, RSp, RSN. 

2) Goal Identification (GI)

The GI procedure is one of the most difficult steps related 

to the construction of the community model. Here the goal is 

to be determined based on the current scenario of the 

application area. Initially we have taken our goal to determine 

Data Transmission Time (DTT), though this goal may be 

changed or appended based on the input parameters and 
objectives. This algorithm describes the procedure to calculate 

the data transmission time. Initially we input the standard 

parameter values [17] to the reference sensor so that they can 
be verified at a later stage. Then the DTT is initialized to zero. 

Then the values are inputted to the values to the procedure IM. 

If it is found that the data matches with the data already 
available with the reference sensor then it is calculated and if 

it does not match with the reference sensor values then they 

are updated and the total transmission time is calculated till 

the Nth level of filter is reached. Here TR denotes the total 

data transmission time. 

Procedure: GI 
TR =Data transmission time 

D = Data for master fusion filter 

δ = Impairment for Data 

RSi = Referece Sensor considering different parameters RS(i) 

like A= Alignment consideration, S= Scale factor stability, 
H=Bias uncertainity, ρ = Data fusion density per local filter, 
V= Average velocity of light, P = Perimeter of master fusion 
filter, N= Number of filter levels 

1. Input RSA, RSS, RSH, RSρ , RSV, RSp, RSN

2. set TR  ← 0

3. input LT, A, S, H, ρ, V, Pn, P, N, NR

4. call IM

5. if (δ != Ø) || D !=RS

6. update A← RSA, S← RSS, H← RSH, ρ← RSρ, V←

RSV, P← RSp, N← RSN 

7. endif

8. i ← 1

8. while (i <= N)

9. TR = TR  + LT*1/A[S(H*ρvPn/π)/F + N*NR] 

10. i ← i + 1

11. end while

12. end procedure

3) Situation Filtration (SF) [11][14][18]

Here we use the Boyd Loop as the standard procedure. The 

following values from [18] are reiterated for completeness. 

For network synchronization among filter levels, Kuramoto's 

order parameter is appled separately to the each filter in the 

following way - 
N

r(t)e
iΨ(t)

 = 1/N ∑ Xi(t).
1

The sum is taken for the N levels of filter. The values of r 

close to 1 over time interval indicate high synchronization. 

When the system is highly synchronized, the collective phase 

of the system or the centroid of the points for each oscillator 

on the unit circle are denoted by Ψ. This angle is calculated 
N N

by Ψ = ArcTan [ ∑ sin θi / ∑ cos θi].
1 1

The synchronization parameters F1 and F2 are the perimeter 

of the first and second level filter respectively. Thus F1 is used 

for the first level and F2 is used for second level. The 



adversial performance is measured directly from the 

Kuramoto's order parameter - 

Ψ (t) = ΨF1(t) - Ψ F2(t) 

Procedure: SF 
1. Input RSA, RSS, RSH, RSρ , RSV, RSp, RSN, Ψ

2. call GI

3. if (δ != Ø) || D !=RS

4. Ψ (t) = ΨF1(t) - Ψ F2(t)

5. endif

4) Impairment Minimisation (IM)

Here, we consider impairment minimization function (δ), 
is a composition of three different parameters viz. attenuation 

(δA), distortion (δD) and noise (δN). If we consider the local 

level of filtration, the concept of impairment does not arise as 
the data are not traversed through filter levels. However, in 
case of global and distributed levels of filtration, the 

impairment does come into picture through the following 
formulas [19] - 

δA = Ψ.l.f 

δD = A.x(t-T) 

δN = Eb/N0 

If the signals are sufficiently strong then the attenuation (δA) 
minimizes, similarly if the frequency components of a signal 
arrive at the receiver end at the same time then the distrotion 

(δD) is minimized and if there is no interfering signal available 
then the noise will be zero. 

Procedure: IM 
1. Input RSA, RSS, RSH, RSρ , RSV, RSp, RSN, Ψ

2. if (δ != Ø) || D !=RS

3. δA = Ψ.l.f

4. δD = A.x(t-T)

5. δN = Eb/N0

6. endif

Moreover after each stage of filtration, the transmission time 

is saved to the database for future reference. 

Algorithm for the Community Model 

In this section the main algorithm of community model 

has been provided with the component modules – PP, GI, SF 

and IM discussed in the previous section. 

1. Input RSA, RSS, RSH, RSρ , RSV, RSp, RSN

2. call GI

3. call SF (F1, F2)

4. set TR← 0

5. input LT, A, S, H, ρ, V, Pn, P, N, NR

6. if state ==Local

7. set N ← 1

8. end if

9. if ((δ != Ø) || D !=RS

10. update A← RSA, S← RSs, H← RSH, ρ← RSρ, V←

RSV, P← RSp, N← RSN 

11. endif

12. i ← 1

13. while (i <=N)

14. TR = TR + IM (A, S, H, ρ, V, P, N)

15. insert singly linked list with header

16. memoisation (h)

17. i ← i + 1

18. end while

19. end procedure

In line 16, the function called memoization keeps track of 

already computed values and avoids re-computation 

IV PERFORMANCE ANALYSIS 

Transmission Time is one of the difficult steps in data 
fusion filtering. It consists of identifying and correlating noisy 
measurements, the genesis of which are unidentified because 
of several inescapable situations. The key models used in this 
fields are either deterministic (based on Classical Hypothesis), 
or probabilistic models (based on Bayesian Hypothesis) . The 
values taken here as the standard parameters are bias 
uncertainty = 01/10/40, scale factor stability = 100-500, 
alignment = 200, random noise =01/05/13, flattening = 
1.298.257223563, latency time = 10 [17]. We found that our 
formulation yields better result than that of Waterfall Model, 
Multisensor Integration Fusion Model, Behavioural 
Knowledge-based Data Fusion Model, Omnibus Model, 
Dasarathy Model and JDL Model. The result is shown in 
figure 3 using MATLAB. 

The DTT of each of these models has been calculated with 

the standard values using the respective formula and the result 

for level 1 are reflected in the following table - 

TABLE II. DTT VALUES 

Model Data Transmission Time 

Waterfall Model 511 

Multisensor Integration 459 

Fusion Model 

Behavioural 436 
Knowledge - based Data 

Fusion Model 

Omnibus Model 441 

Dasarathy Model 443 

JDL Model 439 

Community Model 389 



Fig 3 Comparison of DTT 

V. CONCLUSION 

This paper analyses signaling overhead, power consumption, 

fault tolerance, survivability and robustness facilities among 

different models and compares the community model with 

respect to Transmission Time. The Community Model tries to 

reduce the Transmission Time to improve the performance of 

Data Fusion in information processing. More over the 

transmitted data is much more accurate as they are compared 

with the reference sensor in each stage. The model gives better 

result in terms of data transmission time and we are currently 

studying the aspects related to transmission overhead. 
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