
Study of Various Parallel Implementations of

Association Rule Mining Algorithm

Sarbani Dasgupta1, Banani Saha2

1Department Of MCA,Techno India College Of Technology
Kolkata 700156,India

only4sarbani@gmail.com

2 Department of ComputerSc and Engineering,University of Calcutta
Kolkata 700009, India
bsaha_29@yahoo.com

Abstract-In data mining, Apriori technique

is generally used for frequent itemsets mining

and association rule learning over

transactional databases. The frequent

itemsets generated by the Apriori technique

provides association rules which are used for

finding trends in the database. As the size of

the database increases, sequential

implementation of Apriori technique will

take a lot of time and at one point of time the

system may crash. To overcome this problem,

several algorithms for parallel

implementation of Apriori technique have

been proposed. This paper gives a

comparative study on various parallel

implementation of Apriori technique .It also

focuses on the advantages of using the Map

Reduce technology, the latest technology used

in parallelization of large dataset mining.

Keywords: Data Mining, Association rules,

Apriori, Hadoop , Map Reduce;

I. Introduction

Data mining is the process of autonomously

extracting useful information or knowledge

from large data stores or data sets. Association

rule mining is a very popular data mining

technique and it finds relationships among the

different data in datasets. Frequent itemsets are

a set of items, that appear frequently together in

a transaction dataset. Apriori Algorithm is a

well-known sequential association rule mining

algorithm used for mining frequent itemsets for

association rules. However with the increase of

vast amount of data both in volume and

dimension, application of sequential algorithms

will consume lot of time. Moreover a single

processor machine does not have enough

memory to hold such huge amount of data.

Considering the problem of sequential

algorithms, various parallel algorithms have

been proposed for association rule mining.

Some of the parallel algorithms are Count

Distribution(CD),DataDistribution(DD),Candid

ate distribution[6],[7],[15].However there are

mailto:bsaha_29@yahoo.com
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Databases

many challenges associated with these

algorithms. Most of the problem occurs in case

of communication and synchronization. Another

approach for parallel implementation of

association rule mining is the use of MapReduce

technology for improving the Apriori algorithm.

This paper gives a comparative study on various

parallel implementation of association rule

mining including the application of MapReduce

framework on traditional Apriori Algorithm

using Hadoop platform.

In this paper Section 2 discusses about basic

concept of Association Rules Mining, Section 3

gives the overview of various parallel

Association Rule Mining, Section 4 elaborately

discusses about the Map reduce technology on

Hadoop platform and Parallel Implementation

of Apriori Algorithm based on Map Reduce

technology. Section 5 gives a comparative study

among various parallel implementation of

Apriori Algorithm.

II. Basic Concept of Association

Rules Mining
The association rule mining is used to extract the valuable
knowledge from large-scale databases or datasets. Given I= {I1,
I2…Im} be an itemset. Let D as a transactional database where
each transaction T is a nonempty itemset such that T⊆I.A
unique identifier, called TID, is assigned with each transaction.
We say that a transaction T contains X, a set of some items in I,
if X ⊆ I. The association rules is of the following format: X=>Y,
where X ⊆ I, Y ⊆ I, and X∩Y=Φ.

2.1 Support
The rule X=>Y has support s in the transaction set D if
s% of transactions in D contains X ∪ Y. It describes the
probability that the union set of itemsets X and Y appear
in transaction database. 2.2 Confidence

The rule X => Y holds in the transaction set D

with confidence c if c% of transactions in D that

contain X also contains Y. It describes the

probability that itemsets X and Y appear

synchronously in transaction database.

An itemset is called frequent in D if its support

in D exceeds a given minimal support threshold

min_sup.

In general association rule mining can be

viewed as a two step process:

1. Find all frequent itemsets fk: Each of the

itemsets will occur at least as frequently as a

predetermined minimum support count,

min_sup.

2. Generate strong association rules from the

frequent itemsets: These rules must satisfy

minimum support and minimum confidence.

2.3 Apriori Algorithm

The Apriori Algorithm[19] is the well known

algorithm in association rule mining. Apriori

uses a "bottom up" approach. The algorithm

terminates when no further successful

extensions are found. Apriori uses breadth-first

search to count candidate item sets efficiently.

The name of the Apriori algorithm is based on

the fact that the algorithm uses prior knowledge

of frequent itemset property which is that all

nonempty subsets of a frequent itemset must

also be frequent. The main idea is to find the

frequent itemsets.

The process of the algorithm is as follows:

Step1. Set the minimum support and confidence

according to the user definition.

Step2. Construct the candidate 1-itemsets C1.

Generate the frequent 1-itemsets f1 by pruning

some candidate 1-itemsets C1 if their support

values are lower than the minimum support.

Step3: Join the frequent 1-itemsets f1 with each

other to construct the candidate 2-itemsets C2

and prune some infrequent itemsets from the

candidate 2-itemsets C2 to create the frequent 2-

itemsets f2

Step4: Step3 is repeated again and again until no

more candidate itemsets Ck can be created.

III. Parallel Association Rule

Mining Algorithms
For processing massive datasets, use of
sequential algorithm will consume a lot of time
so parallel algorithms have been implemented
for handling massive datasets with large
dimensions on different platforms and with

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search

different configurations. Many parallel
algorithms has been developed based on
different criteria like load balancing, memory
utilization and task decomposition.

3.1 The Count Distribution algorithm:

The Count Distribution algorithm follows a

data-parallel paradigm according to which the

transaction database is statically partitioned

among the processing nodes, while the

candidate set Ck is replicated at each node. At

each iteration every node counts the occurrences

of candidate itemsets within the local database

partition. At the end of the counting phase, the

replicated counters are aggregated, and every

node builds the same set of frequent itemsets fk.

On the basis of the global knowledge of fk,

candidate set Ck+1for the next iteration is then

built. Inter-Node communication is minimized

at the price of carrying out redundant

computations in parallel.

3.2 The Data Distribution algorithm:

The Data Distribution algorithm attempts to

utilize the aggregate main memory of the whole

parallel system. Not only the transaction

database, but also the candidate set Ck is

partitioned, in order to permit both kinds of

partitions to fit into the main memory of each

node. Processing nodes are arranged in a logical

ring topology to exchange database partitions,

since every node has to count the occurrences of

its own candidate itemsets within the

transactions of the whole database. Once all

database partitions have been processed by each

node, every node identifies the locally frequent

itemsets and broadcasts them to all the other

nodes in order to allow them to build the same

set Ck+1.This approach clearly maximizes the

use of node aggregate memory, but requires a

very high communication bandwidth to transfer

the whole dataset through the ring at each

iteration.

3.3 The Candidate Distribution algorithm:

In case of Candidate Distribution algorithm,

both the database and the candidate set are

partitioned in such a way that it allows each

processor to proceed independently. The

rationale of the approach is to identify, as

execution progresses, disjoint partitions of

candidates supported by (possibly overlapping)

subsets of different transactions. Candidates are

sub-divided on the basis of their prefixes. This

is possible because candidates, frequent

itemsets, and transactions, are stored in

lexicographical order. The approach may suffer

from poor load balancing due to dependence on

resulting candidate portioning schema. Once the

partitioning schema for both Ck and Fk is

decided, the approach does not provide

communication or synchronization among the

nodes.

IV. Parallel Implementation of

Apriori Algorithm based on

MapReduce Technology on

Hadoop Platform
The above mentioned parallel algorithm suffers

from communication and synchronization

problem between the nodes. Since Apriori

Algorithm is a well known algorithm for

Association Rule Mining, so Map Reduce

model is used as it automatically handles the

failure hiding the complexities of fault tolerance

from the programmer.

4.1 MapReduce Model

Google’s MapReduce paradigm [3],[4],[7] is a

distributed programming paradigm and an

associated implementation to support distributed

computing over large datasets. With the help of

this technology a programmer without any

experience in parallel and distributed system can

easily utilize the resources of a large distributed

system, since it hides the details of

parallelization, fault-tolerance, locality

optimization, and load balancing.

The ideas of map reduce technology originated

from the map and reduce functions of the

functional programming. The Map Reduce

framework consists of large number of

computers called nodes which are collectively

referred to as cluster. The Map and Reduce

functions of MapReduce framework are defined

with respect to data structured (key, value)

pairs. Map () can be expressed as

Map (k1,v1) → list(k2,v2).

The Map function is applied in parallel to every

pair in the input dataset (k1,v1). This produces a

list of pairs for each call list (k2,v2). After that,

the MapReduce framework collects all pairs

with the same key from all lists and groups them

together, creating one group for each key. The

Reduce function is then applied in parallel to

each group, which in turn produces a collection

of values in the same domain:

Reduce(k2, list (v2)) → list(v3)

Each Reduce call typically produces either one

value v3 or an empty return, though one call is

allowed to return more than one value. The

returns of all calls are collected as the desired

result list.

4.2 Hadoop

Hadoop is a software framework of map reduce

system which provides a distributed filesystem

(HDFS)[1] that can store data across thousands

of servers, which provides a means of running

work (Map/Reduce jobs) across those machines,

as well as running the work near the data.

The Hadoop Map/Reduce framework has a

master/slave architecture. It has a single master

server or jobtracker and several slave servers or

tasktrackers, one per node in the cluster. The

jobtracker is the point of interaction between

users and the framework. Hadoop's Distributed

File System (HDFS) is designed to reliably store

very large files across machines in a large

cluster.

4.3 PApriori algorithm

This algorithm[18] needs one kind of

MapReduce job. The map function performs the

procedure of counting each occurrence of

potential candidates of size k and thus the map

stage realizes the occurrences counting for all

the potential candidates in parallel way. Then,

the reduce function performs the procedure of

summing the occurrences counts. For each

round of the iteration, such a job is carried out

to implement the occurrences computing for

potential candidates of size k.

The input dataset of the map () is stored on

HDFS as a sequence file of <key, value> pairs,

each of which represents a record in the dataset.

The key is the offset in bytes of this record to

the start point of the data file, and the value is a

string of the content of this record. The dataset

is splitted and globally broadcasted to all

mappers. Consequently, the occurrence

computations are parallel executed. For each

map task, once the items in the candidate

itemsets occur in the transactions, the <’key’, 1>

pair will be outputted, where ‘key’ is the

candidate itemsets. The input of the reduce () is

the data obtained from the map function of each

host. In reduce step, all the values with the same

key is summed up and the final result is

obtained.

V. Comparison among different

parallel implementation of

Association rule mining:
The various parallel algorithms are compared

with respect to the response time of the

algorithm with the increase in the number of

processors as well as storage capacity. Figure 1

shows the response time of the four algorithms

with respect to the datasets of Table 1.

Name T I D1 D16 D32

D4587K.T5.I2 5 2 3278K 52448K 104896K

D3107K.T10.I2 10 2 2016K 32256K 64512K

D3102K.T10.I4 10 4 2016K 32256K 64512K

D2367K.T10.I4 15 4 1456K 23296K 46592K

Table 1:Datasets Parameters

10000 1.6
9000

1.4 8000
7000

1.2 6000

5000
CD 1 CD 4000

3000 DD 0.8 DD
2000

1000 Candi.Distri. 0.6 Candidate dist
0 Papriori 0.4

Papriori

0.2

0

4 8 16 32

Figure 1:Performance of the four algorithms

Both Count Distribution (CD) algorithm and

Candidate distribution algorithm shows that the

response time is near about the time taken by

the serial algorithm. The overhead of the Count

Distribution algorithm is less than that of the

serial algorithm. But some overhead occurs due

to waiting for synchronization amongst the

processor. Candidate distribution algorithm

communicates with the entire dataset during the

redistribution pass. It performs only one

redistribution pass. Data distribution algorithm

does not perform well as the other two

algorithms because of the overhead of extra

communication among the nodes. In Data

Distribution algorithm every node processes

each and every single transaction. It is almost

entirely CPU-bound. CD shows less overhead.

But the synchronization cost can increase in

case of CD if the dataset is distributed among

large number of nodes and the nodes are not

equally capable. PApriori algorithm provides

efficient memory utilization, minimization of

communication and synchronization among

different nodes, load balancing among various

processes. The main advantage of the algorithm

is that it automatically handles failure hiding

complexity and fault tolerance from the

programmer. The parallel algorithms can be

compared with respect to the scaleup, speedup

and size up criteria as shown in Figure 2.The

dataset c of Table 1 is used to show comparison

among the algorithm using 4,8,16,32 cores.

Figure 2:Scaleup for dataset D4587K.T5.I2

12
CD

10

8
DD

6

4 Candidate

2 dist

0 Papriori

4 8 16 32

Figure 3:Sizeup for dataset D4587K.T5.I2

10
CD

8

DD 6

4
Candidate

2 dist
0

Papriori

4 8 16 32

Figure 3:Speedup for dataset D4587K.T5.I2

The CD algorithm shows better performance

with respect to the above factors as shown in the

Figure 1, Figure2 and Figure 3. The other two

algorithms shows an inferior performance.

PApriori algorithm performs even better than

the CD because it reduces the percentage of

overall time spent in communication among the

processors.

The parallel algorithms can be classified based

on load balancing, data layout, memory system

and the type of parallelism as shown in Table 2

Algorithm Load Data layout Memory Typeof

Balancing System parallelism

CD Static Horizontal Distributed Data

DD Static Horizontal Distributed Data
Candidate Static Horizontal Distributed Task
distributio

n

PApriori Dynamic Horizontal Distributed Task

Table 2:Comparasion among different algorithms

Discussion

In Count Distribution algorithm each processor

generates the same set of global frequent

itemsets at each step. As a result it degrades the

performance of the system because suffers from

replication of calculation. Moreover,

communicating the generated candidate set at

each step increases the cost of the system. Data

distribution Algorithm also suffers from

communication overhead as well as overhead of

partitioning the transaction among various

processors. In case of the Candidate distribution

algorithm cost increases due to redistribution of

the transaction database. In PApriori algorithm

it has been experimentally found that if the size

of the dataset increases the algorithm will

perform better. The performance of the PApriori

algorithm has been measured based on several

factors like scale up , speedup and sizeup. As

the algorithm performs well on increasing the

size of the datasets so PApriori algorithm can be

consider as a more efficient algorithm among all

the distributed algorithms discussed in this

paper.

VI. Conclusion
Apriori is the simplest sequential Association

Rule Mining. It has many drawbacks. Specially

when the size of the data increases sequential

algorithm may slow down the system. So many

parallel algorithms have been developed like

Count distribution, Data Distribution and

Candidate Distribution. Sometimes these

algorithms faces communication and

synchronization problem. To overcome this

problem Apriori algorithm is implemented with

MapReduce technology where communication

and synchronization problem is minimized

between the nodes as well as hides the details of

parallelization, fault-tolerance, locality

optimization, and load balancing. In this paper a

comparative study has been done between

different the parallel implementation of the

Apriori Algorithm. The results shows that the

parallel implementation of Apriori Algorithm

using MapReduce technology implemented on

Hadoop platform shows better result.

References:
[1] White Tom, ”Hadoop :The Definitive

Guide”, O’reilly,3
rd

 edition ISBN: 978-1-449-

31152-0
[2]Associationrulelearning.http://en.wikipedia.o
rg/wiki/Association_rule_learning

[3] J.Ekanayake, S.Pallickara, G.Fox. Map-

Reduce for Machine Learning on Multicore.

IEEE International Conference on In eScience,

2008.

[4] J.Ekanayake, S.Pallickara, G.Fox.

MapReduce for data intensive scientific

analyses. Proceedings - 4th IEEE International

Conference on eScience

[5] Lammel, R. Google’s MapReduce

Programming Model - Revisited.Science of

Computer Programming 70, 1–30, 2008

[6] Agrawal Rakesh, shafer John C.. Parallel

Mining of Association Rules,IEEE transactions

on knowledge and data engineering, Vol. 8,

No.6,pp.962-969,1996

[7] Yanbin Ye, Chia-Chu Chiang, A Parallel

Apriori Algorithm for Frequent Itemsets

Mining, Proceedings of the Fourth International

Conference on Software Engineering Research,

Management and Applications (SERA’06), pp.

87-93,2006

[8] M. J. Zaki, “Parallel and Distributed

Association Mining: A Survey”, IEEE, 1999,

pp. 2, 3, 13, 14, 15.

[9] R. Agarwal and J. Shafer, “Parallel mining

association rules”, IEEE Trans. OnKnowledge

and Data Engg., 8(6):962-969, December 1996,

pp. 4-6, 14.

[10] M. J. Zaki, S. Parthasarathy and W. Li.,

“Parallel data mining for association rules on

shared memory multi-processors”. In

Supercomputing 96, Pittsburg, PA, November

1996, pp. 17-22.

[11] M. J. Zaki, S. Parthasarathy, M. Ogihara

and W. Li, “New algorithms for fast discovery

of association rules”, in Proc. of 3rd Int’l.

Conference on Knowledge Discovery and Data

Mining, August 1997, pp. 283-296.

[12] Masaru Kitsuregawa and Takahilus

Shintani, Masahisa Tamura and Iko

Pramudiono, “Parallel Data Mining on large

scale PC Cluster”, H. Lu and A. Zhou (Eds.):

WAIM 2000, © Springer-Verlag Berlin

Heidelberg 2000. LNCS 1846, pp. 15–26, 2000.

[13] A. Mueller, “Fast sequential and parallel

algorithms for association rule mining: A

comparison”. Technical CS-TR-3515,

University of Maryland, College Park, August

1995, pp. 1-5.

[15]Rakhi garg,P.K Mishra,Exploiting

Parallelism in Association Rule Mining

Algorithm,International Journal of

Advancement in Technology ISSN 0976-4860

[16]Xin Yue Yang,Zhen Lu,Yan Fu, Map

Reduce as Programming Model for Association

Rules Algorithm on Hadoop,IEEE Conference.
[17] Neng Li,Li Zeng,Qing He and
ZhongzhiShi,Parallel Implementation of Apriori
Algorithm Based on MapReduce,ACIS
International Coference on Software
Engineering,Artificial Intellegence,Networking
and parallel Distributed Computing 2012
[18]Han Jiawei, Micheline Kamber ,Pei Jian,

“Data Mining Concepts and technique”,3
rd

edition,2012,ElsevierISBN978-93-8093

