
 A Large Software System Test Engineering Practices

Biswadeb Bandyopadhyay
Assistant Professor, Department of Computer Science and Engineering

University of Engineering and Management, Kolkata
E-Mail : biswadeb.bandyopadhyay@uem.edu.in

Mobile: +91-9903052768 I
__

1. Abstract

The following Paper describes the experiences of a

test engineering team, which had worked with a

large software product development and support
activity. This team has studied the existing

software product, available test tools, test

environment, with an objective of analyzing
existing testing processes and methodologies for

this large software product. The Paper discusses a

number of initiatives and recommendations made

by this test engineering group aimed at increasing
the testing efficiency, optimizing the test suites,

measuring and improving effectiveness of test

cases and the quantifiable benefits and process
improvements, that can derived from such

initiatives. This activity was undertaken as part of

a test engineering initiative to bring in place a set
of innovative test engineering practices as

potential business value drivers.

2. Introduction

Software testing is a critical component in the

software development life cycle. This begins right

at the time the software development activity is
started, and it continues in parallel with each

phase of the development life cycle. An effective

test approach, test strategy and test methodology

will not only contribute towards improved product
quality, but will also provide benefits in terms of

reduction in software development cost, faster

time to market and better acceptability of the
product by the end user.

This Paper discusses the experiences and lessons
learnt by a team of testing practitioners dealing

with a large collection of test suites used for large

software system maintenance. These test suites
have evolved over the years and have been

deployed to identify any regressions caused due to

code enhancements or bug fixing in the code. In

addition, they have been traditionally used for
testing each release of the product. These test

suites have been deployed to maintain the

software system in terms of its reliability,
serviceability and maintainability over the years.

Even though these test suites were found very

effective, and have been contributing immensely to

maintain the product quality over the years, a
need was felt to make qualitative and quantitative

improvements in these test suites by automating,

optimizing and enhancing the test suites as part of
continuous testing process improvement initiatives.

This Paper talks primarily about the challenges

involved in and lessons learnt from

 Automating the execution of large

collection of test suites
 Providing an integrated test

environment to perform parallel

testing, thereby bringing down the test
execution time

 Optimizing the test suites

 Enhancing the test suites
 Developing a Web based code coverage

analysis tool to generate code coverage

statistics

 Developing a framework for using the
code coverage analysis in developing

new test cases

 Providing a Web based test
environment to perform unit testing

and code coverage analysis

 Innovating test engineering practices in
testing on different platforms, product

release testing, bug fix testing,

developing test tools for a large
software system

3. Background

Purpose of this Paper is to describe the initiatives

taken by this group of software testing

practitioners with an objective of analyzing existing
testing processes and methodologies for this large

software product. It discusses a number of

initiatives and recommendations made by this test
engineering team aimed at increasing the testing

efficiency, optimizing the test suites, measuring

and improving effectiveness of test cases and the

mailto:biswadeb.bandyopadhyay@uem.edu.in

quantifiable benefits and process improvements,
that can be derived from such initiatives.

Scope of this activity was to study the existing

software product, available test tools, test
environment and to make a number of

recommendations to improve the testing

processes, test tools and the test environment.

The aim was to bring in place a set of innovative
test engineering practices as potential business

value drivers.

4. Approach and Detailed
Description

Optimizing Test Cycle Time

The large software product that is being talked
about has a large collection of test suites, which

have evolved over a period of time. These test

suites have been deployed over the years to
identify any regression caused due to code

enhancement, bug fixing in the code and used for

testing each release of the product. These test

suites have been found very useful in detecting
large number of regressions and performing

release testing of the product.

Size of such test suites was very large consisting of

thousands of test cases spread over a large

number of test areas. Running these large test
suites in an automated manner, which execute the

tests, compare and analyze the test results in

sequential fashion used to take long execution
time. A need was therefore felt to improve the

efficiency in testing by running the tests in parallel

on the target system from multiple execution

platforms. Towards this objective, a new test
environment called “The Integrated Test

Environment for Parallel Testing” was developed

which is described below.

 “The Integrated Test Environment for Parallel

Testing” (ITEPT) reduces test cycle-time by
executing tests from multiple execution platforms

concurrently. ITEPT allows the testers to execute

tests from multiple execution platforms, compare,
analyze the test results and generate the test

reports automatically. A number of test automation

tools like Test Comparator, Test Analyzer were

developed to automate the entire testing process.
Test Comparator compares the actual output with

the expected output and Test Analyzer filters out

all non-genuine mismatches and brings out only
mismatches that need investigation. Each of the

execution platform stores the test analysis results
on a common area, which can be viewed by the

user using appropriate tools.

Test Comparator is a tool, which compares the

actual test output with expected test output. The

test comparator generates a report identifying the

places where actual test output varies from
expected test output. It creates a file listing out

such mismatches found between actual test output

and expected test output.

Test analyzer is a tool which will take as input the

output generated by test comparator and generate
another report containing only genuine

mismatches found between actual test output and

expected test output, based on another file
containing a description of mismatches that can be

ignored. As an example, any date related

mismatches can be ignored. Similarly a database
server host name mismatching between actual test

output and expected test output can be ignored.

Test tool designer has to produce a file containing

such mismatches, which can be ignored. There
could be a number of such mismatches that can be

ignored. Test analyzer will finally generate a

mismatch report only for genuine mismatches
found between actual test output and expected

test output.

A large number of test suites have been modified

to run under Integrated Test Environment for

Parallel Testing. This involved analysis of a large
collection of test cases and ensuring that there

exist no data dependencies, functional

dependencies and name conflicts among the test

cases that need to be run in parallel. The
measured improvement in the test execution

cycles achieved for these test suites by

transforming them to run under ITEPT ranged from
25% to 65%, which is a significant reduction in

test execution time.

ITEPT Architecture

ITEPT is a client-server application, in which a

dedicated system called the ITEPT server receives
and processes every ITEPT client request. The

ITEPT server provides a number of services which

the ITEPT clients running on multiple client

machines request. Test execution platform runs a
parent process, which in turn spawns four child

processes on four client machines. Client processes

make request for various services to the ITEPT
server, which coordinates the parallel test

execution from multiple client machines by

providing all necessary services.

Figure 1. Integrated Test Environment for Parallel Testing Architecture

Business Benefits

 Automated test environment for

parallel execution of tests
 25% to 65% overall reduction in test

execution time

 Ease of maintenance of tests and test
results

 Ability to restart the tests and

reusability of the tests
 Faster time to market for the product

 Reduced cost on post-release

maintenance, rework

 Increased confidence in testing process
and its completeness

The benefits of this test environment are obtained
in each phase of software testing life cycle namely,

 Software

Unit/Module/Feature
Testing

 Software

Feature/Subsystem
Integration Testing (FIT)

 Product Integration Testing

(PIT)

 System/Solution

Integration Testing (SIT)

 Acceptance Testing
 Regression Testing

 Product Release Testing

Measures of Effectiveness of Test
Cases

An effective way to measure the Quality of

software product is the amount of code that has
been tested (i.e. Code coverage). While this does

not guarantee that the code is defect free, the risk

of uncovering more defects from the customer’s
site is reduced considerably as more code is tested

during the product test cycle. It should be realized

that even 100% coverage does not guarantee a
defect free code. Most Test engineer would agree

that while one can never be sure of a bug free

code, a significant milestone is achieved when "all

the code has been tested." Code coverage can be a
valuable measure, especially when time is taken to

achieve a high coverage value.

While working with these test suites, the team

took an initiative to analyze the code coverage for

all the available test suites to get some degree of

ITEPT
Server

Application
Under

Test

Login Server

Multiple Execution
Platforms (ITEPT Clients)

confidence as to the existing level of code
coverage. Code coverage provides a deep insight

into the adequacy of the test cases and the need of

or scope for improvement. The team undertook a
comprehensive analysis of these test suites and

collected code coverage data for a large number of

such test suites. A Web based tool was developed

where all these coverage data were stored, to
order to do a comprehensive analysis of these code

coverage data in various dimensions.

The Web based code coverage analysis tool

developed by the team provided a convenient

platform from where the user can obtain and
analyze the code coverage data for various test

suites. This proved to be an effective tool to

quickly understand and analyze the test coverage
scenarios.

The benefits of this tool were to be able to

generate the following analysis reports

 Line level, function level and module level code

coverage reports

 Annotated source code for function wise,
module wise and test suite wise coverage data

 Annotated source code of a selected

implementation file with lines hit, lines not hit,
lines partially hit

 Analytical report of code coverage of a selected

implementation file for various test suites
 To provide information on the most appropriate

test suites to validate a bug fix/code

enhancements which will guarantee the
maximum statement coverage of the file being

added/modified

 To analyze any field reported problems, to

identify whether the root cause of the failure
was due to non-coverage of the code segment

where the fix for the problem was found

 To identify the root cause of any regression
problems due to any limitation of existing test

suites used for regression testing

Business Benefits

 An effective test tool for analysis of

code coverage statistics
 Use the tool as a powerful test

selection tool

 Use the tool to support white box
testing for improving test coverage

 Strategic decision making in

adopting appropriate test
approach, test strategy, test

schedule

 Achieve product stability

 Forecasting expected problems
from field

 Analysis of field encountered

problems
 Taking effective defect prevention

measures resulting in improved

product quality

Improving Effectiveness and
Efficiency of Test Cases

Apart from benefits obtained through test
automation and parallel test execution, the team

undertook a study and analysis of the existing test

suites for any possible test optimization and
enhancement, which could significantly improve the

effectiveness and efficiency of such test suites in

terms of improved coverage and reduced execution

time.

Towards this objective, the team carried out the

analysis of various test suites to arrive at definitive
and quantitative information about functional and

code coverage of each individual test suite. The

information obtained is used to identify test cases,
which are redundant and do not contribute to

functional and code coverage effectiveness. The idea

is to identify any such overlaps of test cases across
multiple test suites and eliminate them wherever

possible. The second objective of this analysis was to

identify the uncovered part of the application code

and introduce new test cases or enhance the existing
test cases to cover the uncovered code. This will led

to optimization and enhancement of existing test

suites, in conformity with the Optimal Cost /
Enhanced Coverage model adopted for this analysis.

An exercise was carried out to evaluate code
coverage performance of the existing test suites, in

order to understand the nature and completeness of

these test suites. Code coverage percentage for
widely used test suites, for which data was collected,

is given in Figure 2.

 Figure 2. Code coverage of existing test suites

Statistics shown in Figure 2 signify that the code
coverage of various test suites was not sufficiently

high with considerable scope for improvement.

Moreover, since the test suites have evolved over a
period of time and have been developed by many

development groups, it is likely that they contain

redundant test cases resulting in increase in test
execution time without necessarily contributing to

the effectiveness of testing. These redundancies

need to be carefully examined and removed
wherever possible, without impacting the overall

functionality of the test. Following section outlines

the methodologies used by the team that was

adopted towards this test optimization and
enhancement objectives.

Optimizing and Enhancing the Test

Suites

Optimal Cost – Enhanced Coverage
Model:

Generally the cost parameters for optimization

are

 Number of Lines Covered (Ci)
 Number of Test Sets (Ti)

 Execution Time (Ri)

Optimal Cost - Enhanced Coverage Model

optimizes

Optimal (Ti) = Enhanced (Ci) & Optimal (Ri)

Track the line coverage and reduce overlaps across

the tests and arrive at minimal test sets to cover
increased source code. From the code coverage

analysis, the team prepared the following two cross-

reference tables.

Uniqueness

The uniqueness of a test suite is defined in the
present context as the unique source code covered

by any existing test suite and not covered by any

other test suite. It is expected that the uniqueness of

all test suites should be as high as possible which is
a direct measure of how optimized the test suites

are. Table 1 shows some representative uniqueness

across test suites.

Table 1. Uniqueness across existing test suites

Test Suite Total Executed Functions Unique Functions

TS #1
3836 33

TS #2 3673 59

TS #3 3229 3

TS #4 3168 4

TS #5 2332 5

TS #6 2749 5

0

5

10

15

20

25

30

35

T
S

1

T
S

3

T
S

5

T
S

7

T
S

9

T
S

1
1

T
S

1
3

T
S

1
5

T
S

1
7

T
S

1
9

T
S

2
1

T
S

2
3

T
S

1
5

%
 C

o
d

e
 C

o
v

e
ra

g
e

Test Suite

Test Suite Vs %Coverage

Lines Functions

TS #7 2718 24

TS #8 2435 0

TS #9 3039 22

Intersection

Intersection among various test suites represents

the common code segment that is exercised by

multiple test suites. This leads to different test suites

testing the same code segment repeatedly and

thereby increasing the test execution cycle time.

All such overlaps between test suites needed to be

minimized by removing redundant test cases across
test suites wherever applicable. Table 2 shows some

representative intersection across test suites.

Table 2. Intersection among existing test suites

Activities that are involved here are briefly described

below.

Test Efficiency

An effective way of improving the test efficiency is

optimizing the test suites through redundancy

removal within a test suite and across test suites.

The following approach was followed to remove

redundant test cases.

 If any test suite coverage map shows to be a

complete subset of another test suite, the
subset can be potentially considered for

removal. If any test suite contains minimal

uniqueness, corresponding unique test cases
can be added to the superset and the present

test suite can be dispensed with.

 Generate a coverage map of test cases for the
test suites, and remove redundancy by way of

removing test cases wherever coverage map

matches, without impacting the overall

functionality.

 Existing test suites may contain a fair amount
of redundancy particularly in set-up jobs, in

terms of creating identical data structures in

multiple test files. It is necessary to study the
setup files for every test file in a given test

suite, and to combine them wherever the setup

requirements match.

Generate a feature map of test cases and the feature

being tested. Identify any redundancy in the feature
being tested based on analysis of this map. Remove

the corresponding test cases if there exists any

duplication of the feature being tested. The process
should be performed within a test suite as well as

across test suites.

Test Effectiveness

Test effectiveness of the test cases is a measure of

how comprehensive the test cases are. The test
cases need to be investigated for their

comprehensiveness and any lack of it needs to be

Test Data TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10

TS #1
100 X X X X X X X X X

TS #2 89 100 X X X X X X X X

TS #3 79 81 100 X X X X X X X

TS #4 75 73 80 100 X X X X X X

TS #5 60 63 68 68 100 X X X X X

TS #6 70 74 76 77 96 100 X X X X

TS #7 65 68 70 72 86 84 100 X X X

TS #8 78 78 82 85 98 95 86 100 X X

TS #9 63 62 67 73 92 81 75 76 100 X

TS #10
78 79 85 79 96 90 81 85 90 100

addressed by enhancing them appropriately
wherever possible.

Following are the approaches that were adopted for
enhancement of existing test suites. Each may

contribute differently to overall improvement;

nevertheless, all approaches were used.

Feature Mapping

 Create a feature map containing test scripts
that map to a collection of features being

tested based on examination of each test cases

and relevant documentation. Use this map to
identify and analyze the gaps that can be

attempted to fill in.

 Prepare a cross-references table (feature map
from a design perspective) of functions vs. test

suites using the code coverage data available

from the code coverage analysis tool for all
existing test suites. Identify functions

implementing specific feature and improve

coverage of these functions by enhancing test
cases in appropriate test area.

Coverage Mapping

 Code coverage data collected for each test
case in the test suites was used for comparing

against combined code coverage data for all

test suites for a given source file to identify
coverage gaps. Write new test cases based on

the comparative coverage analysis.

In order to generate feature map and coverage map
required for this analysis, test suites were executed

on the test machine using ITEPT platform. A suitable

code coverage tool (Rational’s Purecoverage Tool)
running on the test machine captures the code

coverage results, which are stored into a coverage

analysis database. A code coverage analysis tool
generates code coverage statistical reports based on

this data for various test suites. Based on these

reports, necessary feature map and coverage map
are generated.

The inputs from feature map and the coverage map
are used in eliminating redundant test cases, adding

new test cases and enhancing the existing test

cases. This leads to improved test coverage and

reduced test execution cycle.

Improvements attributed to newly developed test

cases are computed. The process of developing new
test cases, running them through ITEPT and

computing the improvement is iterated till the

required level of improvement is achieved.

Existing Test
Sets

Comprehensive
Test Sets

Figure 3. Test Optimization/Enhancement Process

Figure 4. Technical Architecture of Integrated Test Environment for Parallel

Testing (ITEPT)

Business Benefits

 More rationalized and optimized test
suites

 15% to 20% overall reduction in test

execution time attributed to test
rationalization

 Feature map documentation for each

test suite for easy identification of test
scripts and feature being tested

 Map can be used to break up test

suites into smaller feature oriented

groups, with resultant ease of test
identification for testers

 30% to 40% increase in code coverage

of existing test suites
 Enhanced test suites with high

possibility of detection of errors

 Enhanced test suites with higher
quality in terms of reliability for all

product releases

 Reduced cost on post-release

maintenance, rework
 Increased confidence in testing process

and its completeness

Optimizing Testing on Different
Platforms

Following is the description of an integrated

approach that can be followed to minimize testing

time on different platforms. The approach can
consist of

1. Baseline platform independent tests

2. Identify platform specific tests
3. Partition the test suites according to

priority to arrive at minimal test set

4. Collect platform related unit test cases
developed during bug fixing

Integrated Test Environment for Parallel Testing (ITEPT)

Application

Under Test

Coverage
Tool

Data Processor

/ Loader

Web

Server

Coverage

Analysis Tool

Analysis

Reports

Test Optimization/

Enhancement Process

Application

Executables

 Feature Map

/Coverage Map

Submit

Tests

 New
 Test

Scripts

Source Map

Coverage

Database

Technical Architecture of Integrated Test Environment for Parallel
Testing (ITEPT)

Based on the above inputs, the following two models
can be adopted:

Optimizing Testing for Product
Release

Maintain a single set of platform independent test

cases. This would be arrived at, by running this test

set on all platforms successfully. This needs to be

baselined at an appropriate time interval. Call this
test set CT (Common Test).

Maintain a set of test cases specific to platforms. For
instance, maintain sets of different test cases for

various platforms like OS1, OS2…OSn. Call these

platform specific test sets P1, P2…Pn respectively.

The final testing on all the above platforms will

consist of Final Test Set FTS, where

FTS = CT (to be run only on any one of the

platforms)
 + P1+P2+…+Pn (to be run on the

respective platforms)

This approach is useful in production release testing.

Optimizing Maintenance Testing for
Bug Fixes

Maintain a set of minimal test cases for each of

above platforms and call them MT1, MT2…MTn.

Maintain set of recent unit test cases developed
during bug fixing for each platform and call them B1,

B2…Bn.

The final testing on the above platforms will consist
of the Final Test Set FTS, where

FTS = (MT1+MT2+MT3+…+MTn) +

(B1+B2+B3+...+Bn)

For a single platform testing, it is sufficient to run

MT(i) + B(i)

Minimal test sets will be formulated based on the

high priority test cases, whose size and test
execution time will be much smaller compared to

original test cases.

Strengthening Unit Testing

Many of the field reported problems were traced to

be due to inadequate unit testing. Moreover, it was

also found that many of the regression problems
have been reported due to inadequate coverage of

the unit test cases used during any bug fixing and

code enhancement activities. Any unit testing

methodology therefore, needs to have a mechanism
to evaluate and enhance the coverage of the unit

test cases.

A need was therefore felt to come up with an

integrated test environment that should facilitate

unit testing from the developer’s desktop and carry

out any code coverage analysis in a convenient and
automated manner. This is applicable both during

application development phase and post-release

maintenance phase. The unit testing platform should
enable the developer to write the unit test cases, run

them on the developer’s build, collect code coverage

data and perform any required analysis on the
application files that would have been added or

modified.

The unit testing tool as part of the integrated test

environment should provide a platform for helping

developers in unit testing by

 Automating code coverage data collection of

unit test cases from the developer’s desktop

 Helping the developers in setting the
appropriate source map to view source code

under test

 Generating analysis reports through
appropriate GUI to help in ensuring that the

test cases that were provided adequately cover

the source code that were added/modified
 Identifying the areas of code that are not

covered or partially covered in order to

improve the test cases
 Using the tool as a workbench for ensuring

that the test cases that were generated are

adequate

 Providing an integrated unit testing
environment for test engineers and developers

The unit testing will necessitate the test machine to
be installed with the required application build on

which unit test cases will be executed. An

appropriate code coverage tool running on the test
machine will capture the code coverage data for the

executed unit test cases. The code coverage data

thus generated can be processed and loaded into a
code coverage analysis database. Web application

will access the data from this code coverage analysis

database and generate the necessary reports

through appropriate GUI.

5. Business Benefits

 Thorough unit testing ensures

robustness of the code
 A white box testing technique, to

ensure high test coverage and

maximum error detection

 Developer can test whether the fix
that is provided is correct or not after

any bug fixing

 Minimize possibility of regression
problems after any bug fixing or code

enhancements

 Saves time as a result of less

regression problems
 Higher productivity

 Higher in-house defect detection rate

 Lower defect injection rate in coding
phase

 Reduced rework due to defects

 Reduced overall customer reported
problems

 High code coverage provides

increased confidence to Management
on test adequacy

6. Business Impact

 Automated test environment for
parallel execution of tests

 More rationalized and optimized test

suites

 15% to 20% overall reduction in test
execution time attributed to test

rationalization

 30% to 40% increase in code coverage
of existing test suites

 Enhanced test suites with high

possibility of detection of errors
 Thorough testing ensures robustness

of the code

 A white box technique, to ensure high
test coverage and maximum error

detection

 Higher productivity

 Reduced rework due to defects
 Reduced overall customer reported

problems

 Enhanced test suites with higher
quality in terms of reliability for all

product releases

 Minimize possibility of regression
problems after any bug fixing or code

enhancements

7. Cost Benefit Analysis

 Automated test environment for

parallel execution of tests

 More rationalized and optimized test
suites

 15% to 20% overall reduction in test

execution time attributed to test
rationalization

 30% to 40% increase in code

coverage of existing test suites

 Thorough testing ensures robustness
of the code

 A white box technique, to ensure high

test coverage and maximum error
detection

 Higher productivity

 Reduced rework due to defects
 Reduced overall customer reported

problems

8. Conclusion

With test architecting as an emerging discipline

and a key focus area, it should be the constant

endeavor of all IT companies to lay a strong
foundation for innovative test engineering practices

for complex software products. In a competitive

market environment like today, with increasing

focus on offshore IT business model, it is
imperative for IT companies to pay adequate

attention in evolving effective product testing

mechanisms, developing better test tools, test
environment and test management. This Paper

discusses a number of recommendations from a

test engineering perspective for a large software
product development and support activity in

optimizing testing time, test effectiveness and test

efficiency. It also mentions the benefits that can be
derived from such innovative test engineering

practices and testing framework. Even though the

approach outlined here has been adopted while

working with large software system maintenance,
it can be extended to any software development

and maintenance activities irrespective of the size,

application area and domain.

9. Key References and Bibliography

1. Effective Methods for Software Testing,

William E. Perry, Willey Publication

2. Software Engineering: A Practitioner's
Approach, Roger S. Pressman

3. Software Testing Concepts and Tools,

Nageswara Rao Pusuluri
4. Software Testing in Real Worls, Edward Kit

